
Swartout, Gil, Valente 8-1

Representing Capabilities of
Problem Solving Methods

Bill Swartout

USC
Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

swartout@isi.edu

Yolanda Gil
USC

Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
gil@isi.edu

Andre Valente
USC

Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
valente@isi.edu

Abstract

In order to develop and use shared libraries of
problem-solving methods, it is of paramount
importance to provide adequate descriptions of
their capabilities and competence. Methods
must be indexed and organized based on their
capabilities so that they can be retrieved when
their capability is adequate for the task at hand.
This paper describes the approach taken in
EXPECT for representing method capabilities
and argues that it has important features that
should be used for describing methods in
shared libraries. EXPECT’s capability
representation is tightly coupled with the
domain ontologies in the knowledge base, can
express task-related parameters explicitly, and
is based on case grammars. This representation
allows the system to reason about the capability
descriptions through class subsumption and
reformulation. The benefits of this approach
include self-organizing method libraries, reuse,
and support for explanation. The representation
has already been used extensively within
EXPECT to express a wide range of method
capabilities, ranging from abstract to specific,
small to large, and domain-dependent to
general-purpose methods. The paper also
discusses some of the additional features that
we anticipate will be useful to structure shared
method libraries.

1 Introduction
Libraries of problem solving methods could facilitate
the construction and adaptation of knowledge based

 The copyright of this paper belongs to the papers authors.
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage.
Proceedings of the IJCAI-99 workshop on Ontologies and
Problem-Solving Methods (KRR5) Stockholm, Sweden,
August 2, 1999
(V.R. Benjamins, B. Chandrasekaran, A. Gomez-Perez, N.
Guarino, M. Uschold, eds.)

systems [Chandrasekaran 1986; Eriksson et al. 1995;
MacDermott 1988; Breuker and Van de Velde 1994].
Rather than building a system from scratch, as is current
practice, system builders would assemble a knowledge
based system from reusable components drawn from
shared ontologies and libraries of problem solving
methods. By reusing components, this approach should
allow knowledge-based systems to be constructed more
rapidly. Further, the resulting systems should be more
error free since they will be constructed from existing
(and presumably debugged) resources. Finally, because
the emphasis in system construction will be on
assembling existing components, rather than building
things from scratch, it should be possible for less
experienced individuals to build knowledge based
systems successfully.

But how should these libraries of problem solving
methods be organized? How can the capabilities of
problem solving methods be represented? This
approach to system construction will only work if
people (and machines) can easily find the methods that
are capable of addressing the problem at hand. Other
approaches, such as CommonKADS, use a functional
specification of method capabilities. However, the
matching of these capabilities with problem goals in e.g.
the CommonKADS Library [Valente et.al., 1998] are
meant to be done by a human that analyzes a semi-
formal method description. The library is organized “by
design”, for example using typologies of methods and
explicit collections of related decompositions.

In contrast, our approach aims to build a library of

problem-solving methods that is self-organizing, in the
sense that we can automatically find the right place for a
new method in the library and have tools that can use
the library to build a problem solver for a specific
problem. We believe such a library will enhance
reusability. Also, we want to have capabilities that are
amenable to produce explanations – both of the methods
and the systems constructed using these methods. To
achieve these goa ls, we need a rich and expressive
specification of method capabilities that allows the

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-18/

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1999 2. REPORT TYPE

3. DATES COVERED
 00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
Representing Capabilities of Problem Solving Methods

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California,Information Sciences Institute ,4676 Admiralty
Way,Marina del Rey,CA,90292

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Swartout, Gil, Valente 8-2

Expectation-based Tools for Knowledge Acquisition
expectation

builder
agenda

manager
KB

modifiers

User
 Interaction
Manager/
Explainer

Knowledge Bases

Ontology
and

Factual K

Problem
Solving

Knowledge
(strategies)

Automatic
Method

Instantiator

Domain-
specific

KBS KBS
Compiler

Execution
Trace

LISP
code Interpreter

Interdependency
Model

(Design History)

Figure 1: EXPECT Architecture

system to reason about the capability descriptions
through class subsumption and reformulation.

In this paper we describe the approach we have been
using to represent problem solving method capabilities
in EXPECT, our knowledge based system framework
that supports knowledge acquisition [Swartout and Gil
1995; Gil 1994; Gil and Melz 1996]. We begin with a
brief overview of the EXPECT framework, followed by
a discussion of a set of desiderata that motivated the
design of our representation for method capabilities. We
then discuss the representation we use in detail.

2 The EXPECT Framework
A major goal of the EXPECT framework is to allow
domain experts to change and add knowledge to a
knowledge based system. EXPECT keeps track of the
interdependencies in a knowledge based system, such as
what factual knowledge must be present to support the
problem solving methods that the KBS uses, and how
factual knowledge is used in problem solving. For
instance, in a configuration system that uses propose-
and-revise as its problem solving method, each
constraint must have one or more associated “fixes” that
are used in problem solving to resolve a violation of the
constraint when it occurs. This is an example of a
dependency that arises between the domain
representation of constraints and the problem solving
method. EXPECT captures such dependencies in an
interdependency model which is specific to each
knowledge based system built in EXPECT. When new
knowledge is added to a knowledge based system,
EXPECT examines the interdependency model to
determine what additional knowledge must be provided
to make the new knowledge usable by the problem

solving methods currently employed in the system.
Similarly, if one of the problem solving methods is
modified, EXPECT rederives the interdependency
model to determine if any of the dependencies have
changed. If so, it will request the needed additional
information from the user. In this way, EXPECT helps
a user modify and adapt a knowledge based system
while freeing him from the need to understand the
details of the implementation. Figure 1 shows the
architecture of EXPECT.

EXPECT uses Loom [MacGregor 1991] to represent
domain facts and the domain ontology. Loom is a
description logic-based representation. Like other
description logics, Loom is based on a semantic network
approach to knowledge representation. Concepts in
Loom are descriptions of objects (which may or may not
actually exist) while Loom instances represent objects
that do exist. Concepts can have roles which may be
used to specify attributes of the concept. A
distinguishing feature of description logics like Loom is
that they provide a way of precisely defining the
meaning of a concept, that is, what it denotes. Loom
provides a classifier, which is a reasoner that uses
concept definitions to determine whether one concept
subsumes another concept. Specifically, a concept A is
said to subsume a concept B if all the possible entities
that could be described by B are also necessarily
described by A. For example, ``a man who only drinks
beer'' subsumes ``a man who only drinks imported beer.''
The classifier can determine whether all the instances
that could possibly be described by one concept are also
necessarily described by another based on the
definitions of the two concepts. As a result, it is possible
to automatically organize concepts into an AKO (a kind
of) lattice based only on their definitions.

Swartout, Gil, Valente 8-3

CAPABILITY
 (compute (obj ?d is (spec-of LinesOfComm-distance))
 (for ?coa is (inst-of coa)))
RESULT-TYPE (inst-of distance-value)
BODY
 (if (equal (obj (count (obj (r-locations ?coa)))) (to 1))
 then
 (take (obj (spec-of maximum))
 (of (find (obj (spec-of distance))
 (between (set-of (spec-of geoloc)))
 (in ?coa))))
 else
 (take (obj (spec-of maximum))
 (of (find (obj (spec-of distance))
 (from (r-locations ?coa))
 (to (r-locations ?coa))))))

subgoal posting

control constructs

retrieval of facts

Figure 2: An EXPECT Method

In EXPECT, a goal represents a task to be done or a
problem to be solved. Problem solving methods are
used to accomplish these goals. Each problem solving
method has a capability description which describes the
kinds of problems the method can solve and a method
body which consists of step(s) for achieving the
method’s capability. These steps may include subgoals.
Figure 2 shows an example of a problem-solving
method in EXPECT. The method computes the distance
of lines of communication in a course of action (COA).

As we described above, EXPECT’s interdependency
model captures part of the design of the knowledge
based system. EXPECT creates an interdependency
model for a knowledge based system by synthesizing the
system from a set of abstract problem solving methods
and knowledge about a domain. As it synthesizes the
system, EXPECT records how different parts of the
system depend on each other in the interdependency
model.

EXPECT uses a form of partial evaluation and
hierarchical decomposition to create a knowledge based
system. Starting with an initial high level goal that
specifies what the knowledge based system is supposed
to do, EXPECT looks for a method whose capability
description matches the goal. When a method is found,
its method body is instantiated by replacing variables in
the method with corresponding instances in the goal.
The instantiation of the method body may result in the
posting of subgoals, in which case the process recurs. If
no method can be found for a goal, EXPECT attempts to
reformulate the goal into a new goal or set of goals that
are semantically equivalent to the original. It then
attempts to achieve these new goals, as we describe
below. During this entire process, EXPECT records in
the interdependency model how specific factual

information is used in expanding the problem solving
methods, thus capturing how different parts of the
system depend on each other.

3 Desiderata for the Representation of
Capability Description and Goals
Linking up goals and problem-solving methods is a
critical part of EXPECT’s approach to knowledge
acquisition, and it places a number of demands on the
representation of goals and the capability descriptions of
problem solving methods. In this section we outline the
desiderata that led to EXPECT’s representation for
capability descriptions and goals.

� A representation tied to the domain ontology. We
wanted a representation that was tied to the ontologies
used in EXPECT so that goals could be defined using
terms from the domain. Further, integrating the
representation for capability descriptions and goals
with the domain ontology assures us that the
semantics of the two representations will be
consistent.

� A broad spectrum representation. Some problem
solving methods are very general, while others are
especially tuned to work in highly specialized
situations. We believe that problem-solving method
libraries need to include both kinds of methods.
General methods will provide broad coverage and
allow us to build robust systems, while highly specific
methods will substantially enhance efficiency in
specific situations. We wanted a representation that
would allow us to describe the capabilities of both
very general and highly domain-specific methods.

� Support for “loose coupling” between goals and
method capabilities. Reuse of problem solving
methods will be increased if the capability

Swartout, Gil, Valente 8-4

descriptions of the methods don’t have to match goals
exactly. We wanted a representation that would allow
the system to find methods that could work for a
particular goal, even if they did not match it exactly.

� Support for reformulation. Loose coupling and reuse
can be further increased if goals can be reformulated.
Reformulation involves mapping a goal into a new
goal or set of goals that is semantically equivalent to
the original goal. Reformulation allows the system to
find a way of achieving a goal even if a problem-
solving method could not be matched against the
original goal. To be able to automatically reformulate
a goal, the semantics of the individual terms that
comprise the goal must be well specified so that they
can be mapped into new terms to create equivalent
goals.

� Understandable by users. Since a goal of the
EXPECT effort is to support knowledge acquisition
from domain experts, we wanted a representation that
could be easily understood or paraphrased into
English.

� Self-organizing. In our view, problem solving method
libraries are likely to become quite large in the future.
Further, both AI experts and non-experts will
contribute to these libraries and use methods from
them. For these reasons we felt it was important to
have a representation for method capabilities that
would support self-organization, that is, that would
allow us to organize the methods into a hierarchy
automatically based on their capability descriptions.
This would allow either a machine or person to find
methods that were applicable to a particular problem
easily.

In the next section, we describe our representation for
goals and method capabilities that helps us achieve the
desiderata outlined above.

4 Representing Goals and Capabilities
EXPECT uses a structured representation for goals that
arise during problem solving and the capabilities of
methods that can be used to achieve those goals. Goals
and capabilities are represented as verb clauses using a
case-grammar style formalism [Fillmore 1968]. Each
goal consists of a verb, which specifies what is to be
done, and a number of roles, or slots, which specify the
parameters to be used in the action. The parameters use
terms that are defined in the domain ontology. For
example, the goal of estimating the closure date of
particular transportation movement would be specified
roughly as:

estimate OBJ closure-date OF
transportation-movement-1

Here, estimate is the verb, and the roles are indicated in
upper case. Roles are filled by Loom concepts and
instances taken from the ontology, which couples our
representation with the ontology.

In EXPECT, roles can be filled in several different
ways, which allows considerable flexibility in specifying
a task to be done. A role can be filled by a specific
instance:

add OBJ 3 TO 5
which allows us to specify particular instances that are
to be used in an action. A role can be filled by a
concept:

compute OBJ (spec-of factorial) of 7

In this case, the concept factorial is used to specify
the kind of task that is to be done. The data required to
perform the computation are specified as parameters (in
this case the number 7), while these additional task
parameters allow us to express what needs to be done
with that data in an explicit way and are not strictly
necessary to perform the computation itself. The fact
that roles can be used both to specify the parameters or
objects that will be involved in a task and to further
describe or specify the task itself is one of the key
capabilities that our representation supports, providing
us with a rich language for specifying goals.

Roles can be a type of an instance, as in:

divide OBJ (inst-of number) BY 2

This results in a generic goal that can be instantiated
with any elements of that type.

Roles can also be filled by extensional sets as in:

find OBJ (spec-of maximum) OF (42 2
99)

or they can be filled by intensional sets, where the set is
described by a concept:

find OBJ (set-of
 (spec-of
 violated-constraint))
 IN (inst-of configuration)

Finally, it is possible to use descriptions (which are
similar to the definitions of Loom concepts) in roles:

 estimate OBJ support-personnel
 IN (and location
 (exactly 0
seaports))

This is a goal to estimate the support personnel in a
location with no seaports.

This approach provides us with a rich language for
specifying behaviors. The use of a case grammar
formalism makes it relatively straightforward to
paraphrase the goals into natural language helping to
make them more understandable [Swartout et al. 1991].

Swartout, Gil, Valente 8-5

move
cargo

aircraft

OBJ

WITH

 Goal:
(move
 (OBJ (inst-of cargo))
 (WITH C-140))

 Method capability:
(move
 (OBJ (inst-of cargo))
 (WITH (inst-of aircraft)))

move
cargo

C-140

OBJ

WITH

move
cargo

vehicle

OBJ

WITH

move
cargo

ship

OBJ

WITH

method-1

method-2

method-3

method
hierarchy

goal-1

Figure 3: Translating Goals and Capabilities to Loom to organize and retrieve methods

Capability descriptions for methods are specified in a
similar way, except that variables may appear in the
capability descriptions. These are bound when the
capability descriptions are matched with goals. Figure 2
shows an example of a method and its capability.

As we just showed, EXPECT’s language to describe
goals and capabilities is very expressive. An important
aspect of EXPECT is how it reasons about method
capabilities with this representation, exploiting
subsumption and reformulation as we describe next.
Further details can be found in [Swartout and Gil 1995;
Gil and Gonzalez 1996].

4.1 Creating LOOM Descriptions of Goals and
Capabilities
We described earlier how EXPECT relies on LOOM’s
classifier to automatically organize concepts in an AKO
lattice. EXPECT also relies on the LOOM classifier to
reason about what goals and capabilities subsume others.
This is achieved by turning goals and capabilities into
LOOM descriptions. EXPECT has a core set of Loom
definitions that are used for this, and include action
name (its subclasses are essentially verbs), action role
(its subclasses are OBJ and any parameter name), goal,
and capability. Action roles are relations whose domain
is an action name, and whose range can be any existing
concept in the domain (ex: ship, number) qualified by its
parameter type (set or element, concept or instance,
extensional or intensional). For example, the goal to
compute the factorial of a number is expressed in
EXPECT as:

(compute
 (obj (spec-of factorial)
 (of (inst-of number)))

The corresponding Loom definition that is created is:

(defconcept CM20
 :is (:and compute
 (:the obj (:and concept-desc
 factorial))
 (:the of (:and instance-desc
 number))))

LOOM’s classifier is now able to reason with this
definition. Every term used in the parameters have their
own definitions, provided in the ontologies, and LOOM
will use them in reasoning about goal subsumption.
Notice that these terms and their definitions can be
domain independent (e.g., violated-constraints ,
maximum) or domain dependent (e.g., location ,
closure-date).

4.2 Self-Organizing Method Libraries
Using the techniques just described, EXPECT creates
Loom definitions for the capabilities of all the methods
that are defined in the knowledge base. Loom’s
classifier reasons about these definitions and places
them in a lattice, where more general definitions
subsume more specific ones. Notice that this
subsumption reasoning uses the definitions of the
domain terms and ontologies that are part of EXPECT’s
knowledge bases. As a result, the capability of a method
to “move cargo with a vehicle” will subsume one to
“move cargo with an aircraft”, because according to the
domain ontologies vehicle subsumes aircraft. This is
illustrated in the method hierarchy shown in Figure 3.
As a result, EXPECT’s methods are automatically
organized according to their capabilities, and their
capabilities can be compared based on their place in the

Swartout, Gil, Valente 8-6

estimate support personnel

estimate unloading personnel

estimate seaport support personnel

estimate airport support personnel

unloading personnel

seaport
support personnel

airport
support personnel

support personnel

PARTITION COVERING
REFORMULATION

Figure 4: A covering reformulation

lattice.

4.3 Matching Goals and Capability Descriptions
EXPECT also exploits the representation of goals and
capabilities for matching method capabilities with the
goals that arise during problem solving. EXPECT’s
matcher first translates the posted goal into a Loom
concept, and then invokes the Loom classifier in order to
find methods whose capability descriptions subsume the
posted goal. Figure 3 illustrates this matching process
for the goal of moving some cargo with a C-140 (which
is a particular kind of aircraft).

Once the match has been made using the Loom
representation for the goal and capabilities, the original
representation is used to bind parameters in the goal to
corresponding variables in the capability description.
This is necessary since Loom does not support variables
in concepts.

4.4 Reformulating Goals
When a goal is posted while EXPECT is synthesizing a
knowledge based system and no method can be found
with a matching capability, EXPECT attempts to
reformulate the goal by transforming it into a new goal
(or set of goals) that is equivalent to the original goal,
but expressed in different terms. EXPECT then tries to
find methods for achieving these new goals. This
automatic reformulation allows EXPECT to reuse
methods in a broader range of circumstances than would
be possible if EXPECT required an exact match for
goals and methods. EXPECT supports several types of
reformulations.

� A covering reformulation is a form of divide and
conquer. It transforms a goal into a set of goals that
partition the original goal. If all the goals in the set
are achieved, the intent of the original goal is
achieved. Figure 4 shows an example covering
reformulation. A goal of estimating support personnel
has been posted, but no applicable methods have been
found. Because EXPECT’s ontology (as shown on the
left in Figure 4) indicates that the concept support

personnel is partitioned into unloading personnel,
seaport support personnel and airport support
personnel, EXPECT can reformulate the original goal
into three new goals as indicated on the right in Figure
4.

� A set reformulation is like a covering reformulation
except that it involves a goal over a set of objects
which is reformulated into a set of goals over
individual objects.

� An input reformulation is somewhat similar to the
support that some languages provide for polymorphic
operators. This kind of reformulation occurs when a
goal is specified with a general parameter and no
single method is available at a sufficiently general
level to handle the parameter. In that case, EXPECT
attempts to reformulate the goal into cases based on
the subtypes of the parameter given in the ontology.
EXPECT also creates dispatching code so that once
the knowledge based system has been synthesized and
is being run, the code will dispatch to the appropriate
subcase based on the actual type of the parameter that
is passed in at runtime.

Goal reformulations allow us to state the description of
method capabilities more independently from the
statement the descriptions of the goals that are posted by
other methods or by the user. The benefit is a more
loosely coupling between methods and tasks, i.e.,
between what is to be accomplished and what are
possible ways to accomplish it. Goal reformulations
also illustrate how method libraries can leverage from
domain ontologies and their structure.

5 Related Work

Several groups have proposed approaches for
representing PSM capabilities. In CommonKADS
methodology and related work [Schreiber et al 1994,
Valente et al 1998], method capabilities are represented
in a functional way, i.e., by specifying inputs and
outputs, plus the knowledge used in the process (called
static knowledge). Part of the semantics was also

Swartout, Gil, Valente 8-7

expressed by relating the method to an element of a
typology of methods, typically at the lowest grain size
level (the so-called canonical inferences, see [Aben,
1993]) or at the highest grain-size level (e.g. the suite of
problem types by [Breuker, 1997]). Despite the fact that
EXPECT also models inputs and outputs of methods,
there are many differences between the two approaches.
First, EXPECT uses the case frame representation to
establish a hierarchy of types of goals, while there is no
such notion in CommonKADS. Second, because the
EXPECT framework is based on the idea of deriving or
finding what knowledge is used by a method in the
construction of a problem solver, it is able to derive
(instead of requiring the user to specify) the static
knowledge used by a method. Third, while the terms
used in specifying the input and output roles in
CommonKADS are basically arbitrary, EXPECT relies
on an ontology to find interrelations between them and
reason about them in constructing a problem solver. In
this regard, the EXPECT approach is closer to the
approach used in the Role-Limiting Methods or in
PROTÉGÉ, where there is a method ontology that
characterizes input, output and static knowledge of a
method. An interesting difference, however, is that
EXPECT does not force the user to separate the method
ontology from the domain ontology, because the system
is able to find out automatically what knowledge is
referenced by the method capability specifications. In
summary, EXPECT finds the roles that knowledge will
play when the knowledge-based system is derived by the
method instantiator, while these roles are pre-specified
by most other approaches.

Another important line of research about representing
method capabilities is the work on specifying
assumptions of PSMs [Fensel et al, 1996]. EXPECT
represents some assumptions in the way the Loom
knowledge base is put together. For instance, it can
represent a completeness assumption about descriptions
of ports by defining them to have at least one berth. This
is exploited by the Loom reasoning engine: if an
instance of port does not have a berth, Loom will
classify it as incoherent because it contradicts the
definition of the concept port. Other assumptions are
derived during the matching process. For instance,
assumptions about knowledge availability can be
derived by analyzing a method and concluding that, for
example, the capacity of the C-140 needs to be known
so that the method can calculate whether it can move a
certain cargo using a C-140.

6 Summary

We have described the approach that is used in EXPECT
to describe and reason about goals and method
capabilities. The main features of the approach are:
� the method representation is tightly integrated with

ontologies as a model of the objects that the
methods reason about. Ontologies may be domain-
specific or high-level ontologies.

� a wide range of parameter types, including
intensional sets and generic instances

� method capabilities state explicitly information
about the type of computation that the method does,
not just which data it uses.

� a case-frame representation is used that is
understandable by users and supports explanation.

� a broad spectrum of methods can be represented,
ranging from small domain-specific methods to very
general domain-independent methods (such as
propose-and-revise)

� goals can be reformulated into more specific
subgoals by using domain knowledge stated in the
domain ontologies.

There are several advantages of this approach that
method libraries can benefit from:
� a loose-coupling between goals and method

capabilities, which facilitates reuse.
� self-organizing method libraries, where key

features of the method (in our case their
capabilities) are used to automatically determine
how they relate to one another.

� understandable by users, since they are structured
as case frames that can be easily paraphrased.

An important additional feature of EXPECT is that the
method body, i.e., the description of the procedure and
subtasks that accomplish the method’s capability, is also
expressed explicitly. This is important for reuse, since it
allows adaptation of the methods by using EXPECT’s
knowledge acquisition tools. It is also important
because it allows users to look at the method body and
get first-hand information about how the method works
(as opposed to informal or formal descriptions created
separately from the actual code).

We are planning several extensions to our current
approach in order to make it more suitable for describing
capabilities of methods in shared libraries.

One set of extensions is motivated by our work on
representing role-limiting methods in EXPECT [Gil and
Melz 1996]. We find that the knowledge roles used in
the method should be expressed explicitly, and that
EXPECT can derive them automatically by looking at
interdependencies that it derives. We found the need for
an extensive range of types of knowledge roles,
including classes to be defined in the domain ontologies
and method stubs to be mapped to domain-dependent
methods. We would like to be able to express additional
types of parameters in goals and method capabilities,
such as relations and method classes. Finally, we would
like to be able to express how methods work together to
form larger macro-methods.

Another set of extensions is motivated by our
participation in DARPA’s High Performance Knowledge
Bases Program [Cohen et al. 1998], where one of our
goals is to develop with others a shareable, distributed

Swartout, Gil, Valente 8-8

library of implemented problem-solving methods that
can be used in conjunction with large-scale ontologies to
rapidly create knowledge based systems. In order to
organize these method libraries, in addition to their
capability we would like to represent and reason more
explicitly about the assumptions that they make on
ontologies, the subtasks that they pose, the submethods
that they use, and other information about the method’s
implementation.

Acknowledgements
We would like to thank all the past and present members
of the EXPECT project for their contributions to this
work. We gratefully acknowledge the support of
DARPA with contract DABT63-95-C-0059 as part of
the DARPA/Rome Laboratory Planning Initiative and
with grant F30602-97-1-0195 as part of the DARPA
High Performance Knowledge Bases Program.

Bibliography
[Aben 1993] Aben, M. “Formally specifying re-usable

knowledge model components”. Knowledge Acquisition,
5:119--141, 1993.

[Breuker 1997] Breuker, J. “Problems in indexing Problem
Solving Methods”. In R. Benjamins and D. Fensel, editors:
Proceedings of the IJCAI'97 Workshop on Problem Solving
Methods, 1997.

[Chandrasekaran 1986] Chandrasekaran, B. “Generic tasks in
knowledge-based reasoning”. IEEE Expert , 1(3):23-30,
1986.

[Eriksson et al. 1995] Eriksson, H., Shahar, Y., Tu, S. W.,
Puerta, A. R., and Musen, M. A. “Task modeling with
reusable problem-solving methods”. Artificial Intelligence
79(1995):293--326.

[Cohen et al. 1998] Cohen, P.; Schrag, R.; Jones, E.; Pease,
A.; Lin, A.; Starr, B.; Gunning, D.; and Burke, M. “ The
Darpa High-Performance Knowledge Bases Project”. AI
Magazine, 19(4), 1998.

[Fensel et al, 1996] Fensel, D and Benjamins, R.
“Assumptions in Model Based Diagnosis”. In Gaines, B.
and Musen, M., editors: Proceedings of the 10th Banff
Knowledge Acquisition for Knowledge-Based Systems
Workshop. Banff, 1996.

[Gil and Gonzalez 1996] Gil, Y. and Gonzalez, P. “Using
Description Logics to Match Goals”, In Proceedings of the
1996 International Workshop on Description Logics (DL-
96), November 2-4, 1996, Boston, MA.

 [Gil and Melz 1996] Gil, Y., and Melz, E. “Explicit
representations of problem-solving strategies to support
knowledge acquisition”. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI-96),
1996.

[Gil 1994] Gil, Y. Knowledge Refinement in a Reflective
Architecture. In Proceedings of the National Conference
on Artificial Intelligence (AAAI-94), 1994.

[MacGregor 1991] MacGregor, R. “The evolving technology
of classification-based knowledge representation systems”.
In Sowa, J., ed., Principles of Semantic Networks:
Explorations in the Representation of Knowledge. San

Mateo, CA: Morgan Kaufmann.
[Marcus 1988] Marcus, S. “SALT: a knowledge-acquisition

tool for propose-and-revise systems,” in Automating
Knowledge-acquisition for expert systems S.Marcus (ed),
pp. 81-121. Kluwer Academic Publishing. 1988

[McDermott 1988] McDermott, J, “Preliminary steps toward
a taxonomy of problem solving methods,” in Automating
Knowledge-acquisition for expert systems S.Marcus (ed),
Kluwer Academic Publishing. 1988

[Musen 1992] Musen, M. A. “Overcoming the limitations of
role-limiting methods,” Knowledge Acquisition, 4(2):165--
170. 1992.

[Musen and Tu 1993] Musen, M. A., and Tu, S. W.
Problem-solving models for generation of task-specific
knowledge acquisition tools. In J. Cuena (Ed.),
Knowledge-Oriented Software Design, Elsevier,
Amsterdam, 1993.

[Schreiber et al,1994] Schreiber, A., Wielinga, B.,
Akkermans. J., Van de Velde, W. and de Hoog, R.
“CommonKADS: A comprehensive methodology for KBS
development”. IEEE Expert, 1994.

[Swartout and Gil 1995] Swartout, B. and Gil, Y. “EXPECT:
Explicit Representations for Flexible Acquisition”. In
Proceedings of the Ninth KnowledgeAcquisition for
Knowledge-Based Systems Workshop (KAW’95) Banff,
Canada, February 26-March 3, 1995.

[Swartout et al 1991] Swartout, W. R., Paris, C. L., and
Moore, J. D. “Design for Explainable Expert Systems”.
IEEE Expert 6(3):58-64, 1991.

[Valente et al, 1998] Valente, A., Breuker, J. and Van de
Velde, W. “The CommonKADS Library in Perspective”.
International Journal of Human-Computer Studies, 49:
391—416, 1998.

